Editor: Warren Keuffel

wkeuffel@computer.org

104

IEEE SOFTWARE

Software Configuration Management Patterns
by Stephen P. Berczuk and Brad Appleton, Ad-
dison-Wesley, 2002, ISBN 0-201-74117-2,
218 pp., US$39.99.

n the center of the triangle of project-
related tasks, which is formed by low-
level coding, high-level design, and overall
project management, lies a little-noticed
area that nevertheless has great potential
impact on a project’s success: software
project support. Its purpose is the design and
maintenance of software developers” work en-
vironment, and it comprises tasks such as build
and configuration management, tool selection
and application, and hardware and workspace
setup. Compared to the three tasks mentioned
earlier, it’s received surprisingly little attention
in the professional literature and conscience.

In my experience, newly formed software
development teams often spend an inordinate
amount of time debating possible choices for
the work environment, and still (more often
than not) end up making ad hoc decisions. But
it’s also uncomfortably common for teams to
fundamentally misunderstand or misapply
their tools, causing—at best—frustration and
productivity loss. All this is unnecessary, be-
cause most of these issues have been under-
stood for years, and suitable, mature tools are
readily available. It’s just another strange case
of nondiffusion of knowledge!

This is why Stephen P. Berczuk and Brad
Appleton’s Software Configuration Manage-
ment Patterns is such a welcome contribution.
In 20 short and readable chapters, they talk

Published by the IEEE Computer Society

about basic and more advanced best practices
in SCM. After introducing the main concepts
of central repository, private workspace, and
mainline development, they discuss why and
when to branch and how to handle the subse-
quent merges. They devote several chapters to
unit, integration, and regression testing as nec-
essary activities to maintain codebase integrity.

What sets this book apart is the directly ap-
plicable advice it offers. The authors clearly
speak from experience and never slip into
vague or abstract generalities. The discussion
of various reasons why a team might consider
introducing a branch into the source tree is par-
ticularly clear and instructive. Most other texts
limit themselves to describing the mere me-
chanics of branching. However, this book ex-
plains situations that justify or even require a
branch, such as handling post-release fixes,
third-party sources, or long-running but inde-
pendent development tasks within the same
project. Some of their ideas are rather original,
such as the prerelease branch concept, designed
to help stabilize the codebase before a release
without requiring an all-out code freeze.

The authors adopt a pattern format, where
they introduce each concept as a “solution to
a problem in context.” I have to admit that
they failed to convince me of this approach.
Firstly, software configuration management is
above all a process and casting the discussion
into the terms of static entities (patterns) ap-
pears pretty artificial. Furthermore, the pur-
poses of the various software configuration

0740-7459/04/$20.00 © 2004 IEEE

BOOKSHELF

management practices are rather
straightforward, and the requirement
to find a suitable “problem” so that
each activity can then be motivated as
the corresponding “solution” leads to
a narrative that is rather cumbersome
and sometimes strangely backwards.

Several topics are mentioned only in
passing, such as the interdependency of
SCM tools with the build process and
the requirements each can place on the
adopted directory structure. Also, the
book doesn’t address release manage-
ment as a separate activity, and it only
briefly treats the politics of configura-
tion management (the integration man-
ager isn’t sometimes called the ramrod
for nothing). The authors focus strictly
on SCM’s technical side; they don’t
mention concepts such as change
boards, audits, and baselines.

The book has two useful appen-
dices: one is a list of online resources
on related topics, and the other offers
detailed descriptions of 12 of the most
commonly used SCM tools available.

Overall, Berczuk and Appleton’s Sof?-
ware Configuration Management Pat-
terns is probably the most timely, hands-
on, useful book on this topic today.

Philipp K. Janert s o software project consultant and
maintainer of the beyondcode.org Web site. Contact him at
janert@ieee.org.

There Is
No Silver Bullet

How to Run Successful Projects III:
The Silver Bullet by Fergus O’ Connell,
Addison-Wesley, 2001, ISBN 0-201-
74806-1, 322 pp., US$34.99.

Fergus O’Connell chose the title
How to Run Successful Projects I1I:
The Silver Bullet in response to Fred
Brooks’s 1987 article “No Silver Bul-
let.” While T appreciate that the title
might lure readers to pick it up, those of
us who are experienced project man-
agers know there’s no silver bullet.

To be fair to the author, he does say
in the introduction that he hasn’t really
made a breakthrough; rather, if you
follow his 10-step project management
methodology, all of your projects will
be successful. Moreover, his writing
style makes it easy to read and under-
stand this methodology (not with-
standing statements such as “Require-
ments and design phases are a bit like
adultery,” which do nothing for the
book’s objectives). Overall, O’Connell
has created a good project manage-
ment “how-to” book.

How to Run Successful Projects 111
presents a detailed project management
process combined with a key concept
called the Probability of Success Indi-
cator—a measure of the project’s
progress through the 10 steps. One
could say the PSL, in an indirect way, is
a poor man’s use of the “earned value”
process. For an experienced project
manager, the 10 steps are quite well
known in some form or another, but
for novices, O’Connell’s presentation is
a great introduction to the process. The
PSI, on the other hand, is a useful new
measure of the project’s progress. You
assign a weight to each step according
to what it contributes to the PSI. The
problem is that it’s difficult to accu-
rately assign the PSI contribution. For
example, “score low” or “score high”
ratings are quite subjective.

O’Connell organized the book into
five parts and six appendices. Part 1,
on analyzing and planning projects,
covers the first five steps of the process,

from visualizing goals to managing ex-
pectations. Part 2, on reviewing and
implementing the plan, covers steps 6
through 10, from leadership style to
keeping people informed. Parts 3 and 4
discuss running multiple projects si-
multaneously and assessing project
plans. And Part 5 looks at activities in-
herent in any project management un-
dertaking: resolving issues, coping with
stress, picking the right people, negoti-
ation, meetings, presentation, delega-
tion, and, last but not least, accelerated
analysis and design.

The chapters beyond those that de-
scribe the 10 steps are good for a quick
review. When you don’t have enough
time for the activities they discuss and
you’re under pressure to get going with
implementation, you’ll find the chapter
on accelerated analysis and design
quite useful. However, if you really
want to successfully accomplish the ac-
tivities, I suggest reading specific books
on the subjects. For example, the chap-
ter on picking the right people doesn’t
talk about adequately assessing the in-
terviewee’s technical competency.

How to Run Successful Projects I is
a great introduction to project manage-
ment. The book reads well because the
author has tried to keep the language
simple and the contents focused. Projects
succeed because you plan them well,
staff them with people who are right for
the job, identify risks and plan for con-
tingencies, and constantly monitor and
re-plan to achieve their original goals.
It’s hard work, but you reap enormous

ONLINE REVIEWS

“A Broad Introduction to Software Quality” by Robert C. Larrabee
A review of A Practical Approach to Software Quality by Gerard O’'Regan.

“Practical Software Process Improvement” by Shantha Mohan
A review of Improving Software Organizations: From Principles to Practice
by Lars Mathiassen, Jans Pries-Heje, and Ojelanki Ngwenyama.

www.computer.org/software/bookshelf

January/February 2004 1EEE SOFTWARE 105

BOOKSHELF

rewards when you succeed. Fred Brooks
is still right—there’s no silver bullet.

Shantha Mohan is president of Kaveri, a software
management technology consulting company. Contact her at
shantha_rm@yahoo.com.

IT Architecture:
Patterns for Success

Robert C. Larrabee

Beyond Software Architecture: Creat-
ing and Sustaining Winning Solutions
by Luke Hobmann, Addison-Wesley,
2003, ISBN 0-201-77594-8, 314 pp.,
US$39.99.

Software architecture is a confusing
topic for many people. When I discuss
this topic publicly, eyes glaze over and
brows furrow. When I talk about project
success, however, the audience becomes
energized and animated. Obviously, ar-
chitecture (whatever it might be) is es-
sential to success in information technol-
ogy projects. Luke Hohmann has a track
record of bringing a fresh perspective to
old problems, and Beyond Software Ar-
chitecture: Creating and Sustaining Win-
ning Solutions continues that trend. He
places software architecture in the ap-
propriate business context. Your enter-

prise wants to sustain success, for which
it must first create a good solution, for
which it needs a sound architecture. (See
the “Suggested Reading” sidebar for
more on software architecture.)

Architectural types

Depending on your perspective, an
elephant resembles a rope, a tree trunk,
a huge leaf, or a mighty wall.

This book describes IT architectures.
There are many types of architectures,
perhaps even more than Hohmann ac-
knowledges. He introduces tarchitecture
(technical architecture, which is what
most of us mean when we use the un-
qualified term) and marketecture (mar-
ket architecture). Although not yet com-
mon terminology, these ideas are
germane to creating and sustaining win-
ning solutions. Like the elephant sur-
rounded by six blind men (“Parable of
the Blind Men and the Elephant,” Udana
68-69, Buddhist canon), each of whom
describe the elephant as he experiences it,
“architecture” carries disparate and of-
ten conflicting interpretations. Solutions
(the actual elephant) lie near the intersec-
tion of these different descriptions.

IT architecture is a prelude to func-
tionality. It can be a prelude to success
or to a less favorable outcome. So what
is the prelude to architecture? The au-

Software Architecture: Suggested Reading

Many recent works discuss this relatively new field. The Art of Systems Archi-
tecting, by Mark Maier and Eberhardt Rechtin, addresses architecture in a techni-
cal context. Software Architecture in Practice, by Len Bass, Paul Clements, and
Rick Kazman, is the early definitive work. Software Architect Bootcamp, by Raph-
ael Malveau and Thomas Mowbray, addresses the Zen of the discipline. The IEEE
recently published its architectural standard 1471 titled IEEE Recommended Prac-
tice for Architectural Description of Software-Intensive Systems. More recently, De-
sign & Use of Software Architectures by Jan Bosch tackles software architecture
and component development. Other current works address component develop-
ment “in the small” (CoreA and DCOM, for instance), but most books with “archi-
tecture” in the fitle are pitched at a more technically abstract level. In Beyond Soft-
ware Architecture, Luke Hohmann addresses architecture at the enterprise level of
abstraction—in its proper business context. The book also addresses scripts, logic
layers, and similar aspects of purely technical detail.

106 I1EEE SOFTWARE

www.computer.org/software

thor suggests that you must appropri-
ately allocate business requirements to
architectures if you want to both create
and maintain good solutions. In keep-
ing with the current trend toward ab-
straction, Hohmann provides a pattern
for strategic product management (ac-
tually, a metapattern—a pattern for a
pattern). This too is a recent industry
trend. The Software Engineering Insti-
tute developed a well-received architec-
tural analysis method (the Architec-
tural Tradeoff Analysis Method) and
an architectural reuse methodology
(Product Line Practice). Other authors
(notably, Barry Boehm and David Par-
nas) have written extensively and com-
pellingly on architecture’s centrality.

Architecture
as a unifying principle

The concept of alignment is steadily
gaining traction with today’s business
innovators. All efforts must support a fi-
nal, clear goal; why else would we ex-
pend the time and effort? This book
suggests that architecture might con-
tribute to this unifying, top-to-bottom
total picture. And it’s not just a technol-
ogy picture; it’s an enterprise perspec-
tive. In 1997, Hohmann wrote Journey
of the Software Professional: A Sociol-
ogy of Software Development. This
work expanded on classical IT project
management concepts, adding humanis-
tic underpinnings to our intuition. Be-
yond Software Architecture likewise
expands the architecture field. It’s in-
tended for the technical businessperson,
the IT strategist (yes, Appendix B is en-
titled “A Pattern Language for Strategic
Product Management”), management,
and forward-thinking technologists.
People executing business process
reengineering could benefit from this
book. Like Hohmann’s previous book,
this one also defies categorization. Most
senior technologists and business people
would find it interesting and thought
provoking. It’s clearly written and care-
fully edited, and a valuable addition to
my bookshelf. @

Robert G. Larrabee works for ARINC Engineering LLC.
Contact him at larrabeerc@ieee.org.

