
0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y I E E E S O F T W A R E 1 5

software construction

Pragmatic Software
Configuration Management
Steve Berczuk

E d i t o r s : A n d y H u n t a n d D a v e T h o m a s � T h e P r a g m a t i c P r o g r a m m e r s
a n d y @ p r a g m a t i c p r o g r a m m e r. c o m � d a v e @ p r a g m a t i c p r o g r a m m e r. c o m

W
henever I start a new software pro-
ject, I look at the infrastructure the
team has in place for doing things
like setting up a development
workspace, building, doing ver-
sion management, and so on—the

things that belong to the larger topic known
as software configuration management
(SCM). I worry about these elements be-

cause, in a sense, I’m lazy. I want
to direct my energies into produc-
ing code that works and is main-
tainable. When I have to spend a
lot of manual effort dealing with
infrastructure issues, I suspect
that I’m not generating as much
value for the organization as I
would if I could focus more on
the steps for writing code (this in-
cludes understanding require-
ments and testing). Workspace

management, integration, and build are im-
portant developer tasks, but they shouldn’t
require excess effort.

Often an organization’s SCM mechanisms
don’t help with the work of building software
as much as they could. Either no mechanisms
exist for doing common tasks or the
processes to use those mechanisms are too
complicated and become tasks in themselves.
On a daily basis, developers shouldn’t notice
SCM that much, and what they do notice,
they should eagerly embrace because these
things help them do their jobs. When devel-
opers don’t find SCM processes to be helpful,
it’s often because the processes don’t serve the
organization’s goals well. This tends to be
due to two issues: first, basic SCM structures

are lacking and, second, the structure doesn’t
fit well into the development environment. In
our book Software Configuration Manage-
ment Patterns: Effective Teamwork (Addi-
son-Wesley, 2003), Brad Appleton and I saw
this as a perfect application for pattern lan-
guages (see the related sidebar). Here is a
brief overview of the essential patterns for a
basic, agile SCM environment.

Codelines and policies
The first thing software developers should

do before providing a solution is to be sure
that they understand the problem (see D.C.
Gause and G.M. Weinberg’s book Are Your
Lights On? How to Figure Out What the
Problem Really Is, Dorset House, 1990).
Two items—codelines and branching, and
stability—are especially relevant for this task.

A codeline is a progression of the set of
source files and other artifacts that make up
some software component as it changes over
time. A codeline has a purpose associated
with it, described in the Codeline Policy. A
codeline that forks off from another code-
line for the purposes of parallel development
is often called a branch.

When confronted with a version control
tool, you might be tempted to branch fre-
quently to isolate development work efforts.
Branching codelines that might need recon-
nection later will require merging, which of-
ten works well with proper tool support but
can be error-prone. Merging is a reason many
people swear off branching—even when it
makes sense—or shun version control tools.
In many cases, most development can occur
on a single development line, a Mainline.

1 6 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

SOFTWARE CONSTRUCTION

We often think about SCM pro-
cesses as controlling change tightly
and ensuring stability. In many situa-
tions, this is not necessary. Each de-
velopment stream (or codeline) should
have an appropriate Codeline Policy
that describes what pre-check-in tests
to run and so on. Because many ap-
plications don’t need 100 percent
ready-to-ship-at-any-time stability, we
can establish a Codeline Policy that
gives us an Active Development Line,
where we slightly favor progress over
stability.

Of course, at some point we’ll
want to have code that you can ship at
a moment’s notice. Once we ship a
version of a product, for example, we
might want to allow for changes to
make patch releases. This code should

be on a Release Line, which is a code-
line with a Codeline Policy that favors
stability over progress.

Getting started with
development

Managing change is a universal
problem in software development.
On the whole, change is good; with-
out it, nothing gets done. However,
developers need some control over
their development environment. A
development workspace is where de-
velopers put artifacts that they need to
code, build, and test. These artifacts—
such as source files, libraries, and con-
figuration files—can be shared (in
whole or in part) or private to each
developer. In a shared workspace,
any change instantly affects other de-

velopers using the workspace. Nor-
mally, it’s good to be in synch with
your team, but most people need a
window of time to work free of
change. Giving developers each a Pri-
vate Workspace, where they can inte-
grate changes appropriately and build
the whole system if needed, provides
this.

You can use a Repository to pop-
ulate a Private Workspace with the
right versions of the things that a
developer needs. The Repository is
the central place where all project
components reside, providing “one-
stop shopping” for setting up or up-
dating a workspace. Projects often
use components from other sources.
You can use a special Third-Party
Codeline in the Repository to man-

An SCM Pattern Language

A pattern is loosely defined as a so-
lution to a problem in a context. Pat-
terns are proven solutions. Pattern lan-
guages are a grammar that describes
how to fit the patterns together to make
something meaningful.

The software configuration manage-
ment pattern language describes how to
build a development environment that will
have the correct amount of SCM infrastruc-
ture to create software more quickly and
reliably. Of course, SCM is only part of the
picture (if an often neglected part); you still
need good development and coding prac-
tices. But the SCM pattern language will
help you solve problems so you can focus
your energy on more difficult tasks.

Figure A shows a map of the portion of
the pattern language I discuss in this col-
umn. Each box represents a pattern. Each
pattern’s name tells you the structure you
should create (Mainline, Release Line, Pri-
vate Workspace). You’ll need to read the
pattern to know more details about how
and when to apply it, but the pattern
names form a useful vocabulary for discus-
sion. In our book, Software Configuration
Management Patterns: Effective Teamwork, Brad Appleton and I have grouped the pattern language into two sections: pat-
terns about workspaces and patterns about organizing codelines. In the interests of space, the main text provides an overview
of the workspace patterns after a brief description of some key codeline patterns.

Mainline

Active Development Line

Integration Build

Smoke TestThird-Party Codeline

Regression TestUnit Test

Private System BuildRepository

Private Workspace

Figure A. Part of the software configuration management
pattern language. An arrow pointing from pattern A to pattern
B means two things: you apply pattern B when pattern A
already exists and pattern B helps pattern A work.

SOFTWARE CONSTRUCTION

age this external code in a way that’s
similar to how we manage internally
written code.

Testing, building, and
integration

After you and your team members
have done some coding, you need to
incorporate these changes into the
build. A central Integration Build ac-
complishes this by building from the
codeline’s latest state. Before you
submit changes for the Integration
Build, you must verify that your
changes, when combined with every-
one else’s changes, will not break the
build. You can do this by performing
a Private System Build—a local version
of the Integration Build incorporating
your changes—in your workspace to
ensure that the code accurately reflects
the system that the Integration Build
will create.

Testing is a complicated issue. Too
much time spent testing means less
time coding and a larger interval be-
tween when you make a change and
when others can integrate it. Too lit-
tle time spent testing means that
you’re more likely to introduce er-
rors. Performing a Smoke Test before
you check in your changes lets you
ensure that that the system works
well enough to share with others. We
can rely on a Smoke Test to be enough
for pre-check-in validation only if the
Smoke Test is supported by a Unit
Test, which lets us exhaustively test
the component that we’re working
on and closely related components.
To catch any errors that might slip
through, we must also use a centrally
run Regression Test that tests the sys-
tem for known error conditions.

Does it matter?
Using these patterns together can

give you a much improved and more
agile development environment. You’ll
have more time to spend on coding
and less on supporting activities.
When used together, the practices sup-
port each other. Adding a single prac-
tice to your environment can help a
little, adding practices that support it
can help a lot, and missing one can
hurt. In one instance, using the Active

Development Line pattern improved
the team’s morale and productivity
and the code’s quality. Simplifying the
pre-check-in testing worked well be-
cause the supporting practices (Unit
Tests, Private Workspaces, and so on)
were already in place.

P atterns and pattern languages
help place solutions in context.
Although many best practices ex-

ist, there is no one way to imple-
ment them, and sometimes best
practices conflict. The SCM pattern
language lets you establish basic
SCM practices that help your team
work effectively.

Steve Berczuk has been developing object-oriented
software applications since 1989, often as part of geographically
distributed teams. He’s currently looking for a new opportunity.
Contact him at steve@berczuk.com; www.berczuk.com.

DATA BASE ADMINISTRATOR:

Design database, code, test,
implement. Establish database
parametrs. Control access. Select
codes of utility program for moni-
toring performance. B.S. req'd in
comp. science/appl.math. 40
hrs./wk.; Job site L.A., Contact A.
Sarafian (213) 624-6462. Fax (213)
624-3538

SUBMISSION DETAILS: Rates
are $10.00 per line (ten lines mini-
mum). Average five typeset words
per line, eight lines per column
inch. Add $10 for box number.
Send copy at least one month prior
to publication date to: Marian An-
derson, Classified Advertising, IEEE
Software Magazine, 10662 Los Va-
queros Circle, PO Box 3014, Los
Alamitos, CA 90720-1314; (714)
821-8380; fax (714) 821-4010.
Email: manderson@computer.org.

Career Opportunities

Professors of Computer and
Software Engineering and
Chair of Software Engineering
Department of Computer Engineering

We are presently seeking candidates to fill several positions of
Professor of Computer Engineering and Software Engineering, as well
as a prestigious position of Chair of Software Engineering.

In addition to teaching at the undergraduate and graduate levels,
successful candidates will work in one of the department’s fields of
research: software engineering, engineering large software systems,
embedded computer systems, networking and mobile computing.

Successful candidates must have a Ph.D. in a related area and
the academic background required to become a member of the
Ordre des ingénieurs du Québec.

The new Department of Computer Engineering is rapidly expanding
and presently includes over a thousand students. Researchers are
provided with the necessary space and technical support, a modern
computer environment and special funds to help them start up their
research projects. For more information, visit the department website
at www.gi.polymtl.ca.

Please send your curriculum vitae in French, your academic credentials,
the names of three references and reprints of recent papers to:

Pierre N. Robillard, Ph.D., P. Eng., Head
Department of Computer Engineering
École Polytechnique de Montréal
P.O. Box 6079, Succursale Centre-ville
Montréal, Québec H3C 3A7 Canada
Email: pierre-n.robillard@polymtl.ca

The application review process will begin immediately and will
continue until the positions are filled.

According to Canadian Immigration requirements, Canadian
citizens and permanent residents will be preferred. We are an
equal-opportunity employer.

